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Abstract 
 
The paper presents an approach for multi-state system reliability evaluation where times to failures and 
times to repair are non-exponentially distributed. The suggested procedure reduces a problem dimension 
and simplifies solution. 

1. Introduction 

Traditional binary reliability models allow only two functional states for a system and for each of its 
components: perfect functionality (UP) and complete failure (DOWN). Multi-state System (MSS) 
reliability analysis relates to systems for which one cannot formulate an "all or nothing" type of failure 
criterion. Many real-world systems are composed of multi-state components, which have different 
performance levels and several failure modes with various effects on the entire system performance. 
Reliability models were extended from binary state (UP or DOWN) to finite number of performance 
levels (Multi-State System models). A semi-Markov processes method [Limnios and Oprisan (2001)] is a 
powerful approach and its application to reliability evaluation gives the opportunity to get solution for a 
MSS where failure and repair times may be arbitrary (non-exponentially) distributed. The main difficulty 
of semi-Markov processes application to reliability evaluation for complex MSS is the "dimension 
damnation". At first, state-space diagram building of semi-Markov model for MSS is not a simple job. It 
is a difficult non-formalized process that may cause numerous mistakes even for relatively small MSS. At 
second, to get solution for high-order systems of equations (especially integral equations for semi-Markov 
model) or simulation of complex MSS with large number of system states can require enormous 
computational efforts. Indeed, the number of integral equations in the system that should be solved using 
semi-Markov approach is equal to the square of total number of MSS states. For MSS consisting of n 
different repairable elements where every element j has kj different performance levels one will have MSS 

with  states. Therefore, the total number of integral equations (that should be solved in order to 

find states probabilities for the MSS by using straightforward semi-Markov method) will be
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number can be very large even for relatively small MSS.  

Therefore, the development of the method based on simplified procedures which can reduce the problem 
dimension may be extremely beneficial for reliability engineers. The paper presents such a method that 
uses a special mathematical technique – Universal Generating Function (UGF) and called as combined 
UGF and semi-Markov processes method. UGF technique was introduced by Ushakov (1986). More 
details about the UGF one can find in [Gnedenko and Ushakov (1995)]. The combined UGF and random 
processes method was primary developed only for Markov processes by Lisnianski and Levitin (2003). In 
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the presented paper the method was extended to semi-Markov processes where times to failure and times 
to repair may be non-exponentially (arbitrary) distributed. 

2. Model Description  

In general case any element j in MSS can have kj different states corresponding to different performance, 
represented by the set gj= , where g},...,{ 1 jjkj gg ji is the performance rate of element j in the state i, 

. The generic MSS model [Natvig (1984)] consists of the performance stochastic 

processes , g

}...,,2,1{ jki∈

)(tG j ∈)(tG j j, j=1, …, n  for each system element j, and the system structure function that 
produces the stochastic process corresponding to the output performance of the entire MSS: 
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2.1. Semi-Markov Model for Multi-state Element 
 
According to the method at first stage a semi-Markov model for every multi-state element should be built. 
By this way a state probabilities })(Pr{)( jijji gtGtp == , }...,,1{ jki∈  for every MSS's element 

 can be obtained.  }...,,1{ nj∈
We consider a multi-state element with minor failure and repairs as it was defined by Lisnianski and 
Levitin (2003). With every state i there is associated performance gji of the element j. The states are 
ordered so that gji+1≥ gji for any i. Minor failures and repairs cause element transitions from state i, where 

, only to the adjacent states. It will be transition to the state i-1 if failure occurs in the state i and 
it will be transition to the state i+1

jki ≤≤1

 
 after repair. In the state kj it may be only the failure and transition to 

the state kj-1 and in the state 1 it may be only the repair and transition to the state 2.  
For every element j,  we assume that time to failure is distributed according to cumulative 
distribution function (c.d.f.)  for any state i, 
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time to repair assumed to be distributed according to c.d.f. . )()(
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In order to define semi-Markov process, we obtain the kernel matrix Qj(t)= )()( tQ j
lm , l,m=1,2,… kj:  
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Each element of this matrix determines the probability that transition from state l to state m 
occurs during time interval [0, t]. The kernel matrix (1) and the initial state k

)()( tQ j
lm

j (with the best performance) 
completely define the semi-Markov process which describes the stochastic behaviour of any multi-state 
element j.  
For every element j we designate  the probability that semi-Markov stochastic process which 

starts from initial state l at instant t=0, will be in state m at instant t. Probabilities , l,m=1, 2, …, k
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can be found from the solution of the following system of integral equations: 
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In our case the process always starts from the state kj, hence the states probabilities of multi-state element 
j which should be defined from the system of integral equations (6) are the following 

)()( )( ttp j
kkkj jjj

θ= ,  ,  ...  , , .  (7) )()( )(
11 ttp j

kkkj jjj −− = θ )()( )(
22 ttp j

kj j
θ= )()( )(

11 ttp j
kj j

θ=

So, at the first stage "small" semi-Markov models should be built for each element of the entire MSS. In 
general case for any element j the semi-Markov model consists of 2

jklm =  integral equations (6). By 
solving these equations, we obtain the performance probability distribution (7) 

, i=1, …, k})(Pr{)( jijji gtGtp == j for every element =j 1, …, n at each time instant t.  

2.2. Multi-state System Reliability Evaluation 

At the second stage based on determined states probabilities for all elements, UGF for each individual 
element should be defined. Then by using composition operators over UGF of individual elements and 
their combinations in the entire MSS structure, one can obtain the resulting UGF for the entire MSS by 
using simple algebraic operations. This UGF defines the output performance distribution for the entire 
MSS at each time instant t. MSS reliability measures can be easily derived from this output performance 
distribution.  

The following steps should be executed at the second stage. 
1. Having the sets gj and probabilities  for each element j define universal generating function 
(UGF) of this element in the form   

)(tp ji
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2. Using the composition operators Ωφs and Ωφp defined by Lisnianski and Levitin (2003), over the UGF 
of individual elements and their combinations and applying the recursive procedure for series-parallel 
systems or using the operators described for the bridge structures, obtain the resulting UGF for the entire 
MSS: 
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where K is the number of entire system states and gi is the entire system performance in the 
corresponding state i.  

3. Applying the operators DEA δδδ ,,  introduced in [Lisnianski and Levitin (2003)] over the resulting 

UGF of the entire MSS one can obtain the following MSS reliability indices: 
     a. MSS availability A(t, w) at instant t>0 for arbitrary constant demand w   
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where =g),( wgF i i-w  is an acceptability function.   

 b.  MSS expected output performance at instant t>0 
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            c. MSS expected performance deficiency at t>0 for arbitrary constant demand w  
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3. Conclusions 
 
The advantages of the proposed approach are: 

* Simplification of semi-Markov model building. Instead of the building of complex semi-Markov 
model for the entire MSS, one should built n separate relatively simple semi-Markov models for 
system elements.  
* Simplification of the process of solving a system of equations. Instead of solving one high-order 

system of integral equations one has to solve n low-order systems. In each system the 

number of integral equations is lower or equal than .   
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Numerical examples prove the approach efficiency.  
 

References 

Gnedenko, B. and Ushakov, I. (1995), Probabilistic reliability engineering, John Wiley & Sons Inc., 
NY/Chichester/Toronto. 
Limnios, N. and Oprisan, G. (2001),  Semi-Markov Processes and Reliability. Birkhauser, Boston/Berlin. 
Lisnianski, A. and Levitin, G. (2003), Multi-state system reliability. Assessment, Optimization, 
Applications, World Scientific, New Jersey/London/Singapore. 
Ushakov, I. (1986), “A universal generating function”, Soviet Journal Comput. Systems Sci. 24(5), 61-73. 
Natvig, B. (1984). "Multi-state coherent systems", Encyclopedia of Statistical Sciences, vol. 5, eds. 
Jonson, N. and Kotz, S., Wiley&Sons, NY. 
 
 


	Introduction
	Traditional binary reliability models allow only two functio
	Model Description
	,  ,  ...  ,, .  (7)
	References

